因而正確認識臭氧在水中的物理、化學(xué)過(guò)程與臭氧殺菌的生物化學(xué)過(guò)程是極重要的。由于臭氧在水中溶解的機理以及臭氧對生物細胞物質(zhì)交換的影響過(guò)程極為復雜,本文不能詳細的探討,只就臭氧殺菌做一般性的討論。
其中:u:傳質(zhì)速度,可用在t時(shí)間內從氣相傳入液相的臭氧量G確定,即dG/dt。K:傳質(zhì)系數,F:氣相與液相的接觸表面積,△C傳質(zhì)過(guò)程中的動(dòng)力,可用臭氧在實(shí)際情況下與平衡時(shí)的濃度差決定(即水中臭氧濃度與臭氧源中臭氧濃度差別越大,傳質(zhì)速度越大)。
分析一般傳質(zhì)方程式可以知道,首先要使臭氧盡多地溶入水中,就要盡量加大臭氧與水的接觸表面積F,而這是接觸裝置決定的。
其次,△C說(shuō)明臭氧發(fā)生器的濃度越高,越有利于水對臭氧的吸收·
第三,傳質(zhì)系數K則與多種因素有關(guān),K(總傳質(zhì)系數)為氣相傳質(zhì)系數K氣與液相傳質(zhì)系數K液之和,而臭氧屬于低溶解度氣體,K氣可忽略不計.而根據亨利一道爾頓定律,K液是多種物理參數的復合函數。
K液=f(T,P,u,w,p,ó)
其中臭氧溶解量與氣體壓力P成正比而與水溫T成反比。
隨著(zhù)兩相相對線(xiàn)速度的增大,氣液兩相接觸表面積F及其更新速度也增大,但每個(gè)氣泡與液體接觸的時(shí)間會(huì )減小,因此從綜合效果來(lái)看,氣體-液體的相對線(xiàn)速度應維持在一個(gè)范圍內較好.
液體的粘滯度u,密度p及氣液間介面表面張力。的提高可使相間表面更新速度降低,并相應使K液減小,所以Km與u,p,o成反比,對于各種飲用水,此項可忽略不計。
在應用中,我們應關(guān)注溫度、氣壓兩個(gè)參數,而在設計接觸裝置時(shí)則應注意到水流、氣流的相對速度,尤其是其中的溫度,因為溫度高了不但使水對臭氧的吸收效果下降,而且臭氧本身會(huì )因溫度過(guò)高而分解。國內就曾發(fā)生過(guò)試圖用臭氧處理70·℃的水溫而沒(méi)有取得任何效果的例證。
1894年梅爾費特(Mailfert)根據前人的實(shí)驗報告求出以下臭氧在水中的濃度: 溫度(℃) O 11.8 15 19 27 405560
溶解度(L氣/L水) 0.64 0.5 O.456 0.381 O.27 0.112O.031O 這組數據大致里線(xiàn)性,而且表明臭氧在水中的溶解度大約是氧的lO-15倍。
威諾薩(venosa)與奧帕特金(Opatken)指出,決定臭氧(或任何氣體)在某液體中的溶解度的基本關(guān)系式是亨利定律.即在一定溫度下,任何氣體溶解于已知體積的液體中的重量,將與該氣體作用在液體上的分壓成正比。
而且此定律可推導出結論:在標準溫度與壓力下,臭氧是氧溶解度的13倍。
從亨利定律可以得出結論:要提高臭氧在水中的溶解度,必須提高臭氧氣在整個(gè)氣源中分壓,即提高臭氧源的濃度,如果臭氧源的濃度不夠,處理時(shí)間再長(cháng),水中臭氧濃度也提不高(因已達到濃度平衡)。